

transgene

<u>Hélène Lê<sup>1</sup></u>, Joseph Seitlinger<sup>1</sup>, Ysia Idoux-Gillet<sup>1</sup>, Nadia Jessel<sup>1</sup>, Cécile Zaupa<sup>2</sup>, Jean-Marc Balloul<sup>2</sup>, Sandrine Cochin<sup>2</sup>, Eric Quéméneur<sup>2</sup> <sup>1</sup> INSERM, UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 67000 Strasbourg <sup>2</sup> TRANSGENE, Boulevard Gonthier d'Andernach, 67400 Illkirch-Graffenstaden, France

# Poster ID: 408

# **INTRODUCTION AND RATIONALE**

Lung cancer remains a major cause of cancer death, non-small cell lung carcinoma (NSCLC) with a survival rate below 20% [1]. Lung cancer has been shown to be immunogenic and responsive to immunotherapy. Thus, immune checkpoint inhibitors significantly improved survival rate, reaching up to 40% OS in patients with high levels of tumor PD-L1 expression. However, most of NSCLC patients still fail to respond due to the development of primary or secondary resistance [2]. In this context, alternative therapies are needed. Oncolytic viruses might represent a promising option by their ability to replicate specifically in, and to kill tumoral cells, and their ability to largely engage the immune system. T-VEC has been approved in the USA and in Europe for intra-tumoral treatment of melanoma [3]. The progress of oncolytic virotherapy in the field of NSCLC will require more innovation. In this perspective, a 3D tumor model has been established from patients' lung biopsies to recapitulate the complex architecture and microenvironment of the lung cancer, and better understand the way OVs penetrates and spread into the tumor, and the way they interact with immune mechanisms in situ. The potential of armed Vaccinia vectors developed by Transgene (invirIO<sup>™</sup> platform) will be studied either as a monotherapy, and in combination or as adjuvant therapy with other cytotoxic therapies or sequentially after induction of chemoresistance phenotype in order to override drug resistance and enrich the therapeutic response [4].

## **MATERIAL & METHODS**

## Human specimens

Patients' derived organoids (PDO) were formed from either lung's cancer biopsies, from patients planned for 1<sup>st</sup> line surgery. Patients' informed consents were managed by the CRBS (Centre de Ressources Biologiques des Hôpitaux Universitaires de Strasbourg).

#### *Tissue preparation and culture of PDOs*

Human samples were washed in PBS and enzymatic digestion was performed at 37°C for 1h with intermittent agitation. After incubation, the reaction media containing samples was transferred to a Falcon tube through 70µM cell strainers. The strained cells were centrifuged and the pellet was resuspended in 1mL of DMEM-F12 (Lonza). Other cell types such as cancer-associated fibroblasts, human pulmonary alveolar cells type II and human vein umbilical endothelial cells were added to reconstitute the microenvironment. The cell suspension was then seeded for a final volume of 200µL in Thermoscientific<sup>™</sup> Nunclon<sup>™</sup> Sphera<sup>™</sup> plates (96 wells). PDOs were formed after 5 days of incubation at  $37^{\circ}$  C.

## Histology and imaging

Tumoral PDOs were fixed in 4% paraformaldehyde (PFA). They were dehydrated before paraffin inclusion in order to further perform immunohistochemistry (IHC). For IHC staining, the samples were acquired in the BOND RxM automate. Slides were saturated with H<sub>2</sub>O<sub>2</sub> solution during 10min followed by a 10min incubation with goat serum (Sigma<sup>®</sup>, G6767). Then following primary antibodies were incubated during 45min : anti-TTF1 (1:250 ; Abcam<sup>®</sup> ab76013), anti-PD-L1 (1:200 ; Cell Signaling<sup>®</sup>, 13684). Primary antibodies were revealed with tertiary antibody Novolink (Leica<sup>®</sup>, RE7161). Signal is revealed by TSA-Cy3 or Cy5 (Perkin Elmer<sup>®</sup>, SAT704A). Nucleis were stained with Hoechst (1:10 000 ; Thermo Scientific<sup>®</sup> 62249) during 10min. After a drug therapy treatment, the samples were incubated with the primary antibody anti-caspase 3 clived (1:1000; Cell Signalling<sup>®</sup> 9661) and anti-gfp (1:250; Cell Signalling<sup>®</sup> 46890).

#### Drug screening

Once tumoral PDOs were formed, treated either with chemotherapy alone or in combination with OV (a recombinant Vaccinia virus Copenhagen strain deleted in Thymidine Kinase and Ribonucleotide Reductase that expresses GFP). Duration of treatment is 96 hours. After 96h days of treatment, the medium is replaced by fresh media containing 25% of CellTiter-Blue® reagent to measure cell viability. The plates are agitated for 1min at room temperature prior to incubation at 37° overnight. Then, next morning, the fluorescence reading is proceeded

#### Virus quantification

To assess virus proliferation, 24h and 96h post-infection, PDO and supernatant were harvested and frozen at -80° C. Virus progeny was quantified by plaque assay on Vero cells, on 6 wells plates.

#### Secretome analysis

Concentrations of soluble factors in the supernatants were detected by the multiplexed Luminex MAGPIX (according to the manufacturer's instructions).

## DEMOGRAPHICS

4 patients were used for these experiments.

|               | 20T 442                   | 21T 0056                  | 21T 0501          |
|---------------|---------------------------|---------------------------|-------------------|
| Gender        | Male                      | Male                      | Male              |
| Age (years)   | 63                        | 77                        | 74                |
| Histological  | Adenocarcinoma            | Epidermoid carcinoma      | Adenocarcinoma so |
| subtype       |                           |                           | type              |
| Pre-operatory | Neo-adjuvant              | Ipilimumab & cemiplimab   | No treatment      |
| treatments    | chemotherapy (cisplatin + | combined with carboplatin | (indication RCP   |
|               | vinorelbine)              | and gemcitabine           | Adjuvant          |
|               |                           |                           | chemotherapy)     |

# **Inserm** 3D organoids derived from patients' lung tumours: a tool for investigating the potential



# **RESULTS - DISCUSSION**



The first generation of chemotherapeutics in NSCLC (including cisplatin) showed low response rates ranging from 15 to 25% when used as monotherapy [6]. Many lung cancer treatment protocols recommend a combined chemotherapy plan with two platinum-based anticancer drugs (e.g., Paclitaxel, docetaxel, gemcitabine or pemetrexed) to improve the response rates up to 35%, yet, It is not sufficient. For strategy combination, we aim to study if an additional effect is observed when OV is combined to chemotherapy, the first-line treatment for cancer patients. Here, we show on 2 adenocarcinoma patients that combination with chemotherapy (cisplatin and pemetrexed) decreased tumor cells viability at high doses. At high doses of chemotherapy, OV didn't add value to chemotherapy effect. Indeed, we observe that chemotherapy exerts a cytotoxic effect as the dose is higher (caspase staining is more important). Besides, we observe that OV infected only peripheral cells.

# **CONCLUSION**

Treatment with chemotherapy or OV alone demonstrated an ability to control tumor growth, the combination of cytotoxic drugs and OV failed to demonstrate additional benefit. The reason might be that chemotherapy negatively impacted the replication of OV in the tumor burden. The challenge will be to find the balance between cytotoxicity and OV infection. Croissant doses of OV need to be evaluated in combination with chemotherapy to observe a potentia additional effect. Another interesting strategy besides combination strategy is to study OV potential therapeutic effect on resistant patients. Most of the patients under chemotherapy develops acquired resistance, this highlights the need for using potential therapeutics such as OV to bypass the resistance.

*Perspective:* Supplementary adenocarcinoma patients are being assessed and will complete the results to add more robustness to these observations.



# Corresponding author: hle@transgene.fr

