

Extracellular vesicles (EV) - mediators of therapeutic vaccination? In vivo and in vitro characterization of EVs generated after infection of human and murine cells with therapeutic poxviruses

Lucas Walther^{1,2}, Caroline Tosch¹, Jules Deforges¹, Christine Carapito³, Marie-Christine Claudepierre¹, Nathalie Silvestre¹, Kuang-Jing HUANG^{2,4}, Kaidre Bendjama¹, Eric Quemeneur¹, Jacky G. Goetz², Vincent Hyenne², Karola Rittner¹

¹ Transgene SA, Illkirch-Graffenstaden, France. ² Tumor Biomechanics Lab, INSERM UMR_S1109, Université de Strasbourg (FMTS), Equipe Labellisée Ligue contre le Cancer, Strasbourg, France. ³ Laboratoire de Spectrométrie de Masse Bio-Organique, Institut Pluridisciplinaire Hubert Curien, UMR 7178, CNRS-Université de Strasbourg, France. ⁴ Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67404, Illkirch, France.

INTRODUCTION

Poxviral vectors are among the most promising therapeutic vaccines, demonstrated in ongoing clinical trials: TG4001, a MVA encoding the HPV oncoviral antigens E6 and E7 applied in HPV⁺ anogenital cancers (AACR poster CT045) and TG4050, a personalized MVA vaccine against ovarian and head and neck cancer (AACR poster LB205).

All cells, but especially virus-infected cells, communicate with their environment by secreting extracellular vesicles (EVs). In this work, we inquired whether EVs played a role in the therapeutic vaccination process with MVA vaccines:

- How can we separate EVs from poxviruses after infection (PBMCs or murine DC2.4 cells)?
- How does poxvirus infection modulate the secretion and content of EVs?
- Are EVs immunogenic ?
- **Do they mediate therapeutic effects ?**

• A protocol was established to separate small EVs from poxviruses.

- Poxviral infection increased EVs secretion from infected cells (PBMCs & DC2.4 cell line) and modified their protein content.
- In vivo, such EVs generate OVA-specific CD8⁺ T cells in naïve mice and reduce tumor growth in EG.7-OVA tumor-bearing upon iv injection (n=1).

PROJECT Virus-encoded cargos? Infection **by poxvirus** Cells

3 Isolation and characterization of 0.1µm-filtered EVs from murine dendritic DC2.4 cell line infected with MVA_pH5R-eGFP-OVA-fusion_p11k7.5_Cargo1_pH5R_Cargo2

Classical cup-shaped vesicles in negative staining (TEM)

were visualized (Cryo-EM)

The tetraspanins CD63, CD9 and CD81 are detectable after staining with specific antibodies.

Murine EVs isolated from DC2.4 cells, infected with an armed MVA-GFP-OVA virus, contain therapeutic cargo and GFP-OVA fusion protein.

Contact: rittner@transgene.fr

Bilayered vesicles in EV fraction

Immunogenicity of isolated DC2.4 EVs (MVA-GFP-OVA-Cargo1-Cargo2) n=1

Virus-free EVs from MVA-GFP-OVA-Cargo1-Cargo2 infected DC2.4 cells induce SIINFEKL-specific CD8⁺ T cells.

6 Therapeutic efficacy of DC2.4 EVs (MVA-GFP-OVA-Cargo1-Cargo2) n=1

EVs (sc/sc) or EVs (iv/iv).

Virus-free EVs from MVA-GFP-OVA-Cargo 1-Cargo 2 infected DC2.4 showed therapeutic efficacy visible by a decrease in tumor burden after intravenous injection.

PERSPECTIVES

Cargo 1

The soluble Cargo1 was detected in

the EV fraction, suggesting it was

SN 300g

SN 2000g

SN 1st UC

6000-

All authors affiliated to Transgene SA are or used to be employees of Transgene SA. Other authors do not have competing interest.

Avenue 1: Ex vivo generation of loaded EVs in allogenic stem cells (off the shelf approach). **Avenue 2:** Design poxviral vectors which further enhance loaded EV secretion in vivo.